Determining the type of gene action(s) involved in the genetic control of drought-tolerance and yield-associated traits of groundnut (Arachis hypogaea L.) using generation mean and variance analysis of parental, F1 and the segregating populations (backcro
DOI:
https://doi.org/10.26765/DRJAFS52372264Keywords:
Early-maturing, drought-tolerant, heritability, additive, dominanceAbstract
In Northern Ghana, groundnut production is severely impacted by drought stress. To create better cultivars, it is essential to understand the genetic processes determining drought tolerance. The objective of this study was to use generation mean and variance analysis to identify the gene activities responsible for regulating drought tolerance characteristics associated with groundnut growth and yield. Determining out how additive, dominance, and epistatic effects contributed to these features was the main goal of the study. In order to assess characteristics like days to maturity, biomass yield, pod yield, seed yield, harvest index, and others, the study examined a number of groundnut populations under well-watered (WW) and water-stressed (WS) conditions. Results showed that yield attributes and drought tolerance are highly influenced by both additive and non-additive gene activities. While epistatic interactions were significant for variables like days to maturity and harvest index, dominance effects were notably essential in determining yield and its components. High estimates of narrow-sense heritability were found for characteristics like dry biomass weight (96%) and number of seeds per plot (89%), which suggests strong additive genetic control. On the other hand, qualities with high broad-sense heritability (78% and 98%, respectively) and low narrow-sense heritability (78% and 12%, respectively) revealed significant non-additive genetic variance. The Chinese x Ndogba crossed F1 and F2 plants showed remarkable adaptability, according to the drought tolerance index (DTI), which indicated strong drought tolerance in particular generations.
References
Ali, N., & Wynne, J. C. (1994). Understanding heritability in segregating populations for crop improvement. Crop Science Journal, 34(3), 456-462.
Ali, Z., Basra, S. M. A., Munir, H. A. S. S. A. N., Mahmood, A. R. S. H. A. D., & Yousaf, S. H. A. H. I. D. A. (2011). Mitigation of drought stress in maize by natural and synthetic growth promoters. J. Agric. Soc. Sci, 7(2), 56-62.
Anjum, S. A., Xie, X. Y., Wang, L. C., Saleem, M. F., Man, C., & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African journal of agricultural research, 6(9), 2026-2032.
Arunyanark, A., Jogloy, S., Akkasaeng, C., Vorasoot, N., Patanothai, A., & Nageswara Rao, R. C. (2008). Chlorophyll stability index for the evaluation of drought tolerance in peanut. Crop Science, 48(6), 2245-2251.
Begna, T. (2021). Combining ability and heterosis in plant improvement. Open Journal of Plant Science, 6(1), 108-117.
Begna, T. (2021). Conventional breeding methods widely used to improve self-pollinated crops. International Journal of Research, 7(1), 1-16.
Bhatnagar-Mathur, P., Rao, J. S., & Sharma, K. K. (2007). Genetic engineering for abiotic stress tolerance in groundnut (Arachis hypogaea L.): Current status and future prospects. Plant Biotechnology Journal, 5(5), 543-558.
Bindu Madhava, H., Sheshshayee, M. S., Shashidhar, G., & Prasad, T. G. (2003). Water-use efficiency as a surrogate trait for drought resistance in crops. Indian Journal of Plant Physiology, 8(1), 25-37.
Bodner, G., Nakhforoosh, A., & Kaul, H. P. (2015). Management of crop water under drought: a review. Agronomy for Sustainable Development, 35, 401-442.
Cattivelli, L., Rizza, F., Badeck, F. W., Mazzucotelli, E., Mastrangelo, A. M., Francia, E., ... & Stanca, A. M. (2008). Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field crops research, 105(1-2), 1-14.
Cavalli, L. L. (1952) An analysis of linkage of quantitative inheritance. In: Quantitative inheritance (Eds. E. C. R. Reeve and C. H. Wedelington). HMSO, London, pp.135-144.
Celik, S. (2020). The effects of climate change on human behaviors. Environment, climate, plant and vegetation growth, 577-589.
Chen, L., Zhang, Q., & Xu, Y. (2022). Dominance Effects and Stress Responses in Crop Breeding: A Comprehensive Study. Field Crops Research, 283, 108-119.
Dietz, K. J., Zörb, C., & Geilfus, C. M. (2021). Drought and crop yield. Plant Biology, 23(6), 881-893.
Edo, G. I., Itoje-akpokiniovo, L. O., Obasohan, P., Ikpekoro, V. O., Samuel, P. O., Jikah, A. N., ... & Agbo, J. J. (2024). Impact of environmental pollution from human activities on water, air quality and climate change. Ecological Frontiers.
Edo, M., Iwasaki, Y., & Yamaguchi, T. (2024). Agricultural impacts on climate change: The feedback loop of ozone depletion and drought intensification. Agriculture and Climate Change, 9, 101223.
Ekinci, R., & Bașbağ, S. (2015). Combining ability for yield and its components in diallel crosses of cotton. Notulae Scientia Biologicae, 7(1), 72-80.
Fonceka, D., Tossim, H. A., Rivallan, R., Vignes, H., Faye, I., Ndoye, O., ... & Courtois, B. (2012). Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allopolyploid. BMC Plant Biology, 12(1), 26.
Frahm, M. A., Rosas, J. C., Mayek-Pérez, N., López-Salinas, E., Acosta-Gallegos, J. A., & Kelly, J. D. (2004). Breeding beans for resistance to terminal drought in the lowland tropics. Euphytica, 136, 223-232.
Girdthai, T., Jogloy, S., Vorasoot, N., Akkasaeng, C., Wongkaew, S., Patanothai, A., & Holbrook, C. C. (2012). Inheritance of the physiological traits for drought resistance under terminal drought conditions and genotypic correlations with agronomic traits in peanut.
Giri, R. K., Verma, S. K., & Yadav, J. P. (2020). Generation mean analysis for yield and its component traits in diallel population of cotton (Gossypium hirsutum L.). Indian Journal of Agricultural Research, 54(6), 775-780.
Govardhan, G., Patil, A. S., & Gupta, S. K. (2018). Genetic diversity and heritability studies in groundnut (Arachis hypogaea L.). International Journal of Current Microbiology and Applied Sciences, 7(7), 3001-3008.
Gowda, C. L., Ashok Kumar, A., & Janila, P. (2013). Integrating crop improvement with resource management to alleviate the effects of desertification under climate change scenarios. Annals of Arid Zone, 1-10.
Grandawa, M. M. (2014, May). Characterisation of physico-chemical properties of Arachis hypogaea L. shells (groundnut) as environmental remidation. In International conference on chemical, biological, and environmental sciences (ICCBES’14) (pp. 12-13).
Hadebe, S. T., Modi, A. T., & Mabhaudhi, T. (2017). Drought tolerance and water use of cereal crops: A focus on sorghum as a food security crop in sub‐Saharan Africa. Journal of Agronomy and Crop Science, 203(3), 177-191.
Hamidou, F., Halilou, O., & Vadez, V. (2012). Assessment of groundnut under combined heat and drought stress. Journal of Agronomy and Crop Science, 198(1), 1-12.
Holbrook, C. C., Isleib, T. G., Ozias-Akins, P., Chu, Y., & Knauft, D. A. (2009). Development and phenotyping of a recombinant inbred line population for breeding improved drought tolerance in peanut. Plant Genetic Resources, 7(2), 101-108.
Jadhav, P., Shah, M., & Deshmukh, V. (2023). Genetic Variability and Gene Effects for Yield Traits in Groundnut. Journal of Crop Improvement, 37(2), 123-137.
Jagtap, D. R. (1986). Selection of high-yielding groundnut cultivars under drought conditions. Journal of Agricultural Science, 107(1), 123-127.
Jaleel, C. A., Manivannan, P., Wahid, A., Farooq, M., Somasundaram, R., & Panneerselvam, R. (2009). Drought stress in plants: A review on morphological characteristics and pigments composition. International Journal of Agriculture & Biology, 11(1), 100-105.
Jayalakshmi, V., Reddy, P. V., Reddy, G., & Haritha, S. (2001). Heritability and genetic advance in segregating populations of groundnut (Arachis hypogaea L.). Legume Research-An International Journal, 24(3), 141-147.
Jin, Y., He, J., Turner, N. C., Du, Y. L., & Li, F. M. (2019). Water-conserving and biomass-allocation traits are associated with higher yields in modern cultivars compared to landraces of soybean [Glycine max (L.) Merr.] in rainfed water-limited environments. Environmental and Experimental Botany, 168, 103883.
John, K., Venkataravana, P., & Patil, A. S. (2011). Heritability and genetic advance for pod yield in groundnut (Arachis hypogaea L.). Research Journal of Agricultural Sciences, 2(1), 125-129.
Kabbia, M. F., Toure, A., Traore, M., & Amadou, T. (2017). Genetic analysis of yield and drought tolerance traits in groundnut (Arachis hypogaea L.). Journal of Agricultural and Crop Research, 5(2), 24-33.
Kabir, M., Habiba, U. E., Khan, W., Shah, A., Rahim, S., Patricio, R., ... & Shafiq, M. (2023). Climate change due to increasing concentration of carbon dioxide and its impacts on environment in 21st century; a mini review. Journal of King Saud University-Science, 35(5), 102693.
Kakeeto, R., Melis, R., Biruma, M., & Sibiya, J. (2020). Gene action governing the inheritance of drought tolerance and selected agronomic traits in Ugandan groundnut (Arachis hypogaea L.) lines under drought environment. Euphytica, 216(1), 1.
Karademir, C., & Gencer, O. (2010). Heritability, variance components and selection parameters in cotton (Gossypium hirsutum L.). Journal of Plant Breeding and Genetics, 47(1), 89-94.
Kearsey, M. J., & Pooni, H. S. (1996). The Genetical Analysis of Quantitative Traits. Chapman & Hall.
Khayatnezhad, M., Hasanuzzaman, M., & Gholamin, R. (2011). Assessment of yield and yield components and drought tolerance at end-of season drought condition on corn hybrids (Zea mays L.). Australian Journal of Crop Science, 5(12), 1493-1500.
Kumar, R., Singh, S., & Meena, S. (2022). Impact of Water Stress on Harvest Index in Pulses: A Review. Agricultural Science Research Journal, 12(4), 453-460.
Leakey, A. D., Ferguson, J. N., Pignon, C. P., Wu, A., Jin, Z., Hammer, G. L., & Lobell, D. B. (2019). Water use efficiency as a constraint and target for improving the resilience and productivity of C3 and C4 crops. Annual review of plant biology, 70(1), 781-808.
Li, C., Zhao, T., Yu, H., Li, C., Deng, X., Dong, Y., ... & Zhu, S. (2018). Genetic basis of heterosis for yield and yield components explored by QTL mapping across four genetic populations in upland cotton. BMC genomics, 19, 1-16.
Ma, L., Wang, Y., Ijaz, B., & Hua, J. (2019). Cumulative and different genetic effects contributed to yield heterosis using maternal and paternal backcross populations in Upland cotton. Scientific Reports, 9(1), 3984.
Mather, K. (1949). Biometrical genetics. Dover publication Inc. New York.
Mather, K., & Jinks, J. L. (1982). Biometrical Genetics: The Study of Continuous Variation (3rd ed.). Chapman & Hall.
Mohamed, N. E. (2014). Genetic control for some traits using generation mean analysis in bread wheat (Triticum aestivum L.). International Journal of Plant & Soil Science, 3(9), 1055-1068.
Morales, A., Fox, A., & Aroca, R. (2020a). Multi-approach tactics for improving crop drought tolerance. Journal of Experimental Botany, 71(3), 935-949.
Morales, F., Ancín, M., Fakhet, D., González-Torralba, J., Gámez, A. L., Seminario, A., ... & Aranjuelo, I. (2020b). Photosynthetic metabolism under stressful growth conditions as a bases for crop breeding and yield improvement. Plants, 9(1), 88.
Mukherjee, S., Mishra, A., & Trenberth, K. E. (2018). Climate change and drought: a perspective on drought indices. Current climate change reports, 4, 145-163.
Mulder, H. A., Gienapp, P., & Visser, M. E. (2016). Genetic variation in variability: Phenotypic variability of fledging weight and its evolution in a songbird population. Evolution, 70(9), 2004-2016.
Murtaza, N. (2005). Genetic analysis of yield and its components in cotton (Gossypium hirsutum L.). Journal of Genetics and Plant Breeding, 59(1), 53-57.
Mwadalu, R., & Mwangi, M. (2013). The potential role of sorghum in enhancing food security in semi-arid eastern Kenya: A review. Journal of Applied Biosciences, 71, 5786-5799.
Mwamahonje, A., Eleblu, J. S. Y., Ofori, K., Deshpande, S., Feyissa, T., & Tongoona, P. (2021). Drought tolerance and application of marker-assisted selection in sorghum. Biology, 10(12), 1249.
Nageswara Rao, R. C., Talwar, H. S., & Wright, G. C. (2001). Rapid assessment of specific leaf area and its relationship to plant water use efficiency in groundnut. Journal of Agronomy and Crop Science, 186(3), 175-182.
Nigam, S. N., & Aruna, R. (2008). Breeding for drought resistance in groundnut. Journal of SAT Agricultural Research, 6(1), 1-20.
Nigam, S. N., Dwivedi, S. L., & Gibbons, R. W. (2001). Groundnut breeding: Constraints, achievements and future prospects. Plant Breeding Abstracts, 71(5), 362-370.
Ogunniyan, D. J., & Olakojo, S. A. (2014). Genetic variation, heritability, genetic advance and agronomic character association of yellow elite inbred lines of maize (Zea mays L.). Nigerian Journal of Genetics, 28(2), 24-28.
Oppong-Sekyere, D., Akromah, R., Ozias-Akins, P., Laary, J. K., & Gimode, D. (2019). Heritability studies of drought tolerance in groundnuts using the North Carolina design II fashion and variance component method. Journal of Plant Breeding and Crop Science, 11(9), 234-253.
Oppong-Sekyere, D., Akromah, R., Ozias-Akins, P., Laary, J. K., & Gimode, D. (2019). Heritability studies of drought tolerance in groundnuts using the North Carolina design II fashion and variance component method. Journal of Plant Breeding and Crop Science, 11(9), 234-253.
Pandey, M. K., Roorkiwal, M., Singh, V. K., Ramalingam, A., Kudapa, H., Thudi, M., & Varshney, R. K. (2014). Emerging genomic tools for legume breeding: Current status and future prospects. Frontiers in Plant Science, 5, 390.
Pasupuleti, J., Raghuveer, S., Sushma, B. N., & Upadhyaya, H. D. (2015). Genetic diversity in groundnut genotypes for drought tolerance. Journal of Genetics and Plant Breeding, 60(2), 321-329.
Patel, R., Desai, P., & Shah, M. (2024). Non-Allelic Interactions and Their Impact on Pod Yield in Groundnuts Under Water Stress. Crop Science Review, 36(2), 154-166.
Patel, R., Reddy, M., & Sharma, S. (2024). Genetic Analysis of Harvest Index in Legumes: Dominance and Additive Effects. Legume Research, 47(1), 45-53.
Patil, A. S., & Nakakeeto, S. (2014). Genetic variability, heritability and genetic advance in groundnut (Arachis hypogaea L.). Journal of Agricultural Sciences, 2(1), 25-35.
Peng, X., Zhang, Z., Ye, J., & Xu, J. (2021). Drought stress adaptation: Metabolomics analysis of drought-resistant and susceptible maize. Journal of Plant Physiology, 264, 153468.
Prasad, P. V. V., Craufurd, P. Q., Kakani, V. G., & Wheeler, T. R. (2003). Heat tolerance in grain legumes: Approaches to screening and breeding for tolerance. Plant Science, 164(6), 1153-1163.
Puangbut, D., Jogloy, S., Kesmala, T., Vorasoot, N., Akkasaeng, C., Patanothai, A., & Puppala, N. (2011). Heritability of early season drought resistance traits and genotypic correlation of early season drought resistance and agronomic traits in peanut. SABRAO Journal of Breeding & Genetics, 43(2).
Rao, R. N., Sheshshayee, M. S., Karaba, N. N., Sreevathsa, R., Rama, N., Kumaraswamy, S., ... & Udayakumar, M. (2012). Groundnut: Genetic Approaches to Enhance Adaptation of Groundnut (Arachis Hypogaea, L.) to Drought. Improving Crop Productivity in Sustainable Agriculture, 303-359.
Reddy, A. R., Chaitanya, K. V., & Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161(11), 1189-1202.
Reddy, D. S., Kumar, R. R., & Nair, S. (2014). Heritability, correlation and path coefficient analysis in groundnut (Arachis hypogaea L.) under water stress and well-watered conditions. International Journal of Scientific and Research Publications, 4(6), 1-5.
Román-Ponce, B., Castillo, L. M., & Carrillo, L. M. (2017). Genetic evaluation of drought tolerance in groundnut (Arachis hypogaea L.) using multivariate techniques. Tropical and Subtropical Agroecosystems, 20(3), 375-387.
Sakadzo, N., & Kugedera, A. T. (2020). The use of small grains for food security and climate compliant in dry regions of Zimbabwe: A review. Sumerianz Journal of Agriculture and Veterinary, 3(10), 143-149.
Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, 217037.
Shivanna, H., Shetty, H. S., & Ramesh, S. (2003). Identification of sources of resistance to root-knot nematode (Meloidogyne spp.) in groundnut (Arachis hypogaea L.). Euphytica, 132(1), 69-77.
Singh, P., Yadav, R., & Kumar, A. (2023). Genetic Interactions and Yield Traits in Legumes: Insights from Scaling Tests. Journal of Agricultural Research, 48(1), 89-101.
Song, Z. Y., Lu, L., & Lu, Y. L. (2020). Genome-wide association study reveals the genetic basis of drought tolerance in maize (Zea mays L.). BMC Genomics, 21(1), 597.
Songsri, P., Jogloy, S., Vorasoot, N., Akkasaeng, C., Patanothai, A., & Holbrook, C. C. (2008). Root distribution of drought-resistant peanut genotypes in response to drought. Journal of Agronomy and Crop Science, 194(2), 92-103.
Spinoni, J., Barbosa, P., De Jager, A., McCormick, N., Naumann, G., Vogt, J. V., ... & Mazzeschi, M. (2019). A new global database of meteorological drought events from 1951 to 2016. Journal of Hydrology: Regional Studies, 22, 100593.
Tadesse, T., Pardo, R., Gutzler, D., Jha, P., Casterline, M., & Fox, J. (2021). Early warning system to forecast drought and its impact on crop yield in New Mexico. Agronomy, 11(5), 987.
Taiz, L., & Zeiger, E. (2010). Plant Physiology (5th ed.). Sinauer Associates.
Tardieu, F. (2013). Plant response to environmental conditions: Assessing potential impacts on agricultural productivity. Annual Review of Plant Biology, 64(1), 601-635.
Tardieu, F., & Simonneau, T. (1998). Variability among species in stomatal control under fluctuating soil water status and evaporative demand: Modeling isohydric and anisohydric behaviors. Journal of Experimental Botany, 49(Special Issue), 419-432.
Thomas, R. G., & Campbell, L. C. (2000). Heritability of yield and its components in groundnut (Arachis hypogaea L.) under moisture stress. Journal of Agricultural Science, 135(2), 177-183.
Tyagi, V. (2011). Correlation studies in groundnut (Arachis hypogaea L.). Indian Journal of Plant Breeding and Genetics, 71(2), 291-294.
Upadhyaya, H. D. (2005). Variability for drought resistance related traits in the mini core collection of peanut. Crop Science, 45(4), 1432-1440.
Upadhyaya, H. D., Bramel, P. J., Ortiz, R., & Singh, S. (2001). Developing a core collection of peanut (Arachis hypogaea L.) using taxonomical, geographical, and morphological descriptors. Genetic Resources and Crop Evolution, 48(6), 625-632.
Upadhyaya, H. D., Sharma, S., Singh, S., & Singh, M. (2011). Inheritance of drought resistance related traits in two crosses of groundnut (Arachis hypogaea L.). Euphytica, 177, 55-66.
Vadez, V., Krishnamurthy, L., & Kashiwagi, J. (2012). Drought tolerance in groundnut: Genetic variation and utilization in breeding. Journal of Crop Improvement, 26(4), 401-432.
Vieira, S. D., Araujo, A. L., Souza, D. C., Resende, L. V., Leite, M. E., & Resende, J. T. (2019). Heritability and combining ability studies in strawberry population. Journal of Agricultural Science, 11(4), 57-469.
Wannows, A. A. M. Y., Sabbouh, Y., & Al-Ahmad, S. (2015). Generation mean analysis technique for determining genetic parameters for some quantitative traits in two maize hybrids (Zea mays L.). Jordan Journal of Agricultural Sciences, 11(1).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Daniel Oppong-Sekyere, Wilberforce Orlando Aduguba
This work is licensed under a Creative Commons Attribution 4.0 International License.